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Abstract The non-enzymatic reaction between reducing
sugars and proteins has received increased attention in nutri-
tional and medical research recently. In the current manu-
script, effect of glycation in structural changes of human se-
rum albumin (HSA) by the metabolites of glucose such as
glyoxal, methylglyoxal and glyceraldehyde was studied using
different spectroscopy techniques. Glycation of HSA was
monitored by following advanced glycation end-products
(AGEs) fluorescence changes, HSA intrinsic fluorescence
measurement, extrinsic fluorescence using 8-analino 1-
nephthlene sulfonic acid (ANS) dye, and circular dichroism
(CD) studies. AGEs were formed within 7 days of incubation
with glyoxal, methylglyoxal and glyceraldehyde. However,
methylglyoxal induced significant structural changes in HSA
compared with glyoxal and glyceraldehydes. Moreover, ANS
binding to native and glycated-HSA showed difference in
binding pattern of these metabolites to HSA. The CD spec-
trum revealed changes in the secondary structure of HSA up-
on glycation when compared to native HSA. Furthermore, the
MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium
bromide) assay established the cytotoxicity of the glycated-
HSA towards human liver carcinoma (HepG2) cell lines via
the production of reactive oxygen species.
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Introduction

Non-enzymatic glycation is a complex cascade of reactions
initiated by condensation of reducing sugars with the free
amino groups of proteins to form reversible Schiff’s bases,
which undergo rearrangement to form relatively stable
Amadori products. Amadori products, over a period of time,
undergo a series of reactions involving multiple dehydration,
fragmentation, and oxidative modification via highly reactive
dicarbonyl intermediates to form stable, heterogeneous ad-
ducts called advanced glycation end products (AGEs) [1–3].

Although AGEs formation occurs during the normal age-
ing process, it is accelerated under hyperglycemic conditions.
Further, it has been shown that formation of AGEs in vivo
contributes to several pathophysiologies associated with age-
ing and/or diabetes mellitus, for example arthritis, atheroscle-
rosis, chronic renal insufficiency, Alzheimer’s disease, ne-
phropathy, neuropathy, and cataracts [4–8]. In addition, many
cells have receptors for AGEs (RAGE). Interaction of AGE
with RAGE leads to activation of NF-kB, which stimulates
generation of the pro-inflammatory and adhesion molecules
that underlie the pathology of diabetic vascular complications
[9]. Moreover, abnormal modification, including glycation,
induces neuronal proteins to misfold and form amyloid fibrils
in a stepwise process from prefibrils to fibrils [10].

Tissue and circulating AGE levels are higher in smokers
with concurrent increase in inflammatory markers [11]. There
is evidence from animal studies that exposure to high levels of
exogenous AGEs contributes to renal and vascular complica-
tions [12]. AGEs often accumulate intracellularly [13] as a

* Mohd Shahnawaz Khan
moskhan@ksu.edu.sa

1 Protein Research Chair, Department of Biochemistry, College of
Science, King Saud University, Riyadh, Saudi Arabia

2 King Fahd Medical Research Center, King Abdulaziz University,
Jeddah 21589, Saudi Arabia

3 Department of Clinical Biochemistry, Sheri-Kashmir Institute of
Medical Sciences, Soura, India

J Fluoresc (2015) 25:1721–1726
DOI 10.1007/s10895-015-1658-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s10895-015-1658-2&domain=pdf


result of their generation from glucose-derived dicarbonyl pre-
cursors [14].

Glycation of proteins interferes with their normal func-
tions by disrupting molecular conformation, altering en-
zymatic activity, reducing degradation capacity, and inter-
fering with receptor recognition [15]. Glycation-derived
free radicals can cause protein fragmentation, and oxida-
tion of nucleic acids and lipids [16]. The amino groups of
adenine and guanine bases in DNA are also susceptible to
glycation and AGE formation [17].

Glyoxal and methylglyoxal are potent endogenous
glycating glucose metabolites. Methylglyoxal is formed
spontaneously from triose phosphates in all organisms
during anaerobic glycolysis [18] and from other non-
enzymatic and enzymatic pathways [19]. Glyoxal is
formed by lipid peroxidation and degradation of monosac-
charides, saccharide derivatives and glycated proteins
[20]. Glyceraldehyde is also involved in the glycation of
proteins. It is derived from glyceraldehyde-3-phosphate,
an intermediate of glycolysis, through the polyol pathway,
or from fructose, during its transformation by fructokinase
[21].

Human serum albumin (HSA) is the most abundant
(40 mg/mL) and quantitatively the most important depot
and transport protein in blood plasma. It is also a major
antioxidant plays an important role in maintaining osmo-
larity of plasma and interstitial fluids. In vivo, the propor-
tion of glycated albumin in healthy persons is in the range
between 1 and 10 % [21, 22]. However, among individ-
uals with hyperglycemia it can increase two to threefold
[23, 24]. For this reason serum albumin has been adopted
as a model in many in-vitro studies on glycation [25, 26].
To determine the role of glycation, it was imperative to
assess the specific pattern of modifications caused by var-
ious glycating agents. In the present study, we attempted
to elucidate the specific alterations (Conformational
change) in human serum albumin (HSA) caused by
glycation with different carbonyl metabolites. Moreover,
we also investigate toxicity of glycated-HSA in liver
(HepG2) cancer cell lines.

Material and Methods

Glycation of Human Serum Albumin

Human serum albumin (0.5 mg/mL) was incubated
in phosphate buffer (50 mM, pH 7.4) with 0.5 mM
of glyoxal, methylglyoxal and glyceraldehyde for
7 days at 37 °C. The concentration of protein was esti-
mated using Bradford method. BSA (1 mg/mL) was
used as standard.

Tertiary Structure of Native and Glycated HSA: Intrinsic
Fluoresence Measurement

Intrinsic fluorescence of native and glycated HSA (2 μM)was
monitored by the use of Jasco (FP-750) fluorescence spectro-
fluorometer. The emission spectrum from 300 to 400 nm was
recorded after excitation at 280 nm at 25 °C. Both the excita-
tion and emission slit widths were at 5 nm.

Detection of Advanced Glycation end Products (AGEs)

The AGE-related fluorescence of all incubated samples was
obtained on a Jasco (FP-750) fluoresence spectrophotometer
by exciting at 320 nm and the emission was recorded between
345 and 600 nm. Excitation and emission slit width was 5 and
10 nm respectively.

Surface Hydrophobicity Analysis: ANS Fluorescence
Measurement

A stock solution of 1 mMANS (Sigma, USA) was prepared in
water. Native and glycated HSA (2 μM) and ANS (50 μM)
were mixed at room temperature and the fluorescence was
subsequently measured by recording the emission spectrum
from 400 to 600 nm after excitation at 380 nm.

Circular Dichroism (CD) Analysis of Native
and Glycated-HSA

Far-UV CD measurements were performed by the use of a
circular dichroism chiroptical spectrometer (Applied
Photophysics, Chirascan-Plus, UK). Samples in a 1 mm
quartz cuvette were maintained at 25 °C with a circulating
water bath. Spectra of native and glycated HSA (0.2 mg/
mL) at different times were measured in the range 200–
280 nm with a step size of 1.0 nm. Each measurement was
repeated thrice and mean values were taken.

Cytotoxicity of Glycated-HSA

Cell Culture HepG2 cells were grown in Dulbecco’s modi-
fied eagle’s medium (DMEM) supplemented with 10 % fetal
bovine serum (FBS), 0.2 % sodium bicarbonate, and
antibiotic/antimycotic solution (1 mL/100 mL of medium).
The cells were maintained in 5 % CO2–95 % atmosphere
under high humidity at 37 °C.

MTTAssay HepG2 cells were treated with different concen-
trations of glycated-HSA (1.5–12 μg/mL) for 24 h. The treat-
ed cells were studied for cytotoxicity assay by MTT assay.
Percent cell viability was assessed using the 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay
as described earlier by Siddiqui et al. [27]. Briefly, cells
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(1 × 104) were allowed to adhere for 24 h in CO2 incubator at
37 °C in 96 well culture plates. After 24 h exposure, MTT
(5 mg/mL of stock in PBS) was added (10 μl/well in 100 μl of
cell suspension) in each well and plates were incubated for 4 h
in CO2 incubator at 37 °C. Then, supernatant was discarded
and 200 μl DMSO was added to each well and mixed gently.
The developed color was read at 550 nm. Untreated sets were
also run under identical conditions and served as control.

Morphological Analysis Morphological changes were ob-
served to determine the alterations induced by glycated-HSA
in HepG2 cells. All the cells were exposed to different con-
centrations (1.5–12 μg/mL) of glycated-HSA for 24 h. The
images were taken using an inverted phase contrast micro-
scope at 20× magnification.

Reactive Oxygen Species (ROS) Generation ROS genera-
tion was assessed using 2, 7-dichlorodihydrofluorescein
diacetate (DCFH-DA; Sigma–Aldrich, USA) dye as a fluores-
cence agent following the protocol [28]. After the exposure of

Fig. 3 ANS (8-anilino 1-napthalene sulphonic acid) fluorescence
measurement. ANS, fluorescence was measured by recording the
emission spectrum from 400 to 600 nm after excitation at 380 nm

Fig. 2 Detection of advanced glycation end product (AGE). a
Fluoresence was measured by exciting at 320 nm and the emission was
recorded between 345 and 600 nm. Excitation and emission slit width
was 5 and 10 nm respectively. b Time dependent AGEs formation

Fig. 1 Intrinsic Fluorescence measurement of native and Glycated-HSA.
a The emission spectrum from 300 to 400 nm was recorded after
excitation at 280 nm at 25 °C. Both the excitation and emission slit
widths were at 5 nm. 2 μM of Native and glycated-HSA was used for
fluorescence measurement. b Change in wavelength maxima was plotted
against glycating agent
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glycated-HSA for 24 h, cells were washed with PBS and were
incubated for 60 min in DCFH-DA (20 μM) containing in-
complete culture medium in dark at 37 °C. Then, the cells
were analyzed for intracellular fluorescence using fluores-
cence microscope.

Results and Discussion

Glycation of proteins by glucose metabolites such as glyoxal,
methylglyoxal and glyceraldehyde have been reported to play
a critical role in ageing [29], diabetes [16, 17], renal failure
[18, 19], Alzheimer’s disease [10], tumourigenesis and multi-
drug resistance in cancer chemotherapy [30].

Intrinsic fluorescence analysis showed quenching/
decrease in fluorescence intenisty of Glycated-HSA

compared to native HSA as indicated in Fig. 1(a).
Glyceraldehyde and Glyoxal induced marginal changes
in HSA while methylglyoxal displayed maximum de-
crease in the intrinsic fluorescence intensity. This can be
attributed to conformational changes, which may expose
tryptophan residues to extrinsic quenchers. Glycation in-
duced conformational change has been earlier reported in
various proteins including HSA, α-Synuclein, ovalbumin,
lysozyme and hemoglobin [31, 32].

Changes in the emission wavelength maxima were also
observed in HSA during glycation. A blue shift was ob-
served in HSA treated with glyoxal, methylglyoxal and
glyceraldehyde Fig. 1(b). However, maximum decrease
in fluorescence intensity and a blue shift of 30 nm was
found in methylglyoxal treated-HSA when compared to
HSA incubated with Glyoxal and Glyceraldehyde. Blue
shift in Glycated-HSA suggested that human serum albu-
min may get converted into more compact and transition
aggregate-like structures. Glycation induced protein ag-
gregation has been reported previously in insulin [33],
hemoglobin [31] and other proteins [10].

Advanced glycation end-products (AGEs) formation
was detected using fluorescence spectroscopy techniques
[10]. AGEs give emission spectra between 400 and
410 nm after excitation at 320 nm. Our results (Fig. 2a
and b) illustrated formation of AGEs in the presence of
glyoxal, methylglyoxal and glyceraldehyde as evident
from the increase in fluorescence around 400 nm.
Increase was more prominent in HSA treated with
methylglyoxal. Higher levels of AGEs were formed in
the presence of methylglyoxal, suggesting dicarbonyl are
more efficient glycating agent in comparision to
glyceraldehyde.

1-anilinonaphthalene-8-sulfonate (ANS) is an extrinsic dye
to measure protein variation in hydrophobicity. ANS binds to

Fig. 5 Cytotoxicity of glycated-
HSA: MTT reduction assay.
Percent viability of HepG2 was
assessed using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide
(MTT) assay

Fig. 4 Circular Dichroism (CD) measurement of native and Glycated-
HSA. Spectra of native and glycated HSA (0.2 mg/mL) after 7 days
incubation were measured in the range of 200–280 nm with a step size
of 1.0 nm
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hydrophobic domains in protein structure to measure the ex-
tent of hydrophobicity in protein. Protein bound ANS (Fig. 3)
fluorescence intensity of Glycated-HSA in the presence of
glyoxal and methylglyoxal was similar compared to native
HSA, suggesting similarity in the mode of binding towards
hydrophobic amino acids. However, ANS fluorescence in-
tensity of glyceraldehyde modified-HSA decreased, indicat-
ing a conformational changes in HSA from glyceraldehyde
interaction resulting in concealing the hydrophobic domains.
Hydrophobic domains are perturbed in glycated-HSA, sug-
gesting that the hydrophobic domains might be self-
associated to form aggregate-like structure.

Far-UV CD spectrum of HSA is characterized by the
presence of two strong negative bands at 208 and 222 nm,
suggesting α-helical structure in HSA, which changes sig-
nificantly after glycation (Fig. 4). Secondary structure of
proteins diminished in glycated protein [31, 32].

The cytotoxicity of the glycated-HSA formed under
methylglyoxal treatment was examined by adding ali-
quots of the glycated product, in the range of 1.5–
12 μg/mL to HepG2 cell culture media. Cytotoxicity
of the glycated HSA was evaluated by MTT reduction

inhibition assay. Reduction in cell viability was mea-
sured in the presence of glycated-HSA (Fig. 5). 6–
12 μg/mL of glycated-HSA showed maximum reduction
in cell viability.

The morphology of the untreated and treated HepG2 cells
was examined by inverted phase contrast microscope to pro-
vide physical evidence and ascertain the toxic effect of
glycated product. The cultured cells showed changed morpho-
logical patterns upon the treatment with glycated -HSAwhen
compared to the control (Fig. 6).

To examine if the glycated-HSA led biological toxicity was
mediated by free radicals, reactive oxygen species (ROS) was
measured. There was a high rise in green fluorescence (Fig. 7)
indicating huge ROS production in culture cells treated with
glycated-HSA compared to control cells. These results sug-
gested that the toxicity of glycated product is largely mediated
by the production of ROS. The cause of cytotoxicity might be
interaction of protein aggregate with cell membranes of the
cultured cells, although some other mechanism(s) for the same
cannot be ruled out. The similar trend of cytotoxicity of
glycated protein was earlier observed in neurotypic (SH-
SY5Y) cell line [34].

Fig. 7 Reactive Oxygen
measurement in HepG2 cell lines.
ROS generation was assessed
using 2, 7-
dichlorodihydrofluorescein
diacetate (DCFH-DA) dye as a
fluorescence agent

Fig. 6 Morphological analysis of
HepG2 cell lines. Alterations
induced by glycated-HSA in
HepG2 cells. The images were
taken using an inverted phase
contrast microscope at 20×
magnification
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Conclusion

Glycation induced various conformational changes in human
serum albumin. HSA is rapidly glycated in the presence of
glucose metabolites generating aggregate like structure which
caused cell oxidative stress and resulted in high cytotoxicty
towards HepG2 cell lines. Future studies on specific protein
domains and mode of interactions would be helpful in the
development of anti-glycating agents.
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